Chemical Communications

(The Journal of the The Chemical Society, Section D)

NUMBER 21/1970

11 NOVEMBER

The Structure of the Diterpenoid Baccatin-I, the 4β ,20-Epoxide of 2α , 5α , 7β , 9α , 10β , 13α -Hexa-acetoxytaxa-4(20),11-diene

By D. P. DELLA CASA DE MARCANO and T. G. HALSALL* (The Dyson Perrins Laboratory, Oxford University, Oxford OX1 3QY)

Summary Baccatin-I has been shown to be the 4β , 20epoxide of 2α , 5α , 7β , 9α , 10β , 13α -hexa-acetoxytaxa-4(20),-11-diene (I), and 5α -deacetylbaccatin-I (III) and 1β hydroxybaccatin-I (IV) have also been isolated.

IN 1964 Taylor¹ isolated a complex ester formulated as $C_{32}H_{44}O_{12}$ from the heartwood of *Taxus baccata* L. It was called baccatin, but on re-isolation² was subsequently renamed baccatin-I to avoid confusion with a methoxy-triterpene lactone isolated by Preuss and Orth³ which had also been called baccatin.

Baccatin-I is very difficult to obtain free of related esters but careful purification has afforded a sample, m.p. 298°, $[\alpha]_{p} + 86^{\circ}$ which has been shown to have the molecular formula $C_{32}H_{44}O_{13}$ with one more oxygen atom than the formula originally suggested. Its structure (I) has now been established as the 4β ,20-epoxide of the hexa-acetate of taxa-4(20),11-diene- 2α , 5α , 7β , 9α ,10 β ,13 α -hexaol.

The n.m.r. spectrum showed that it was a taxane derivative having the four typical methyl signals at τ 8.86, 8.76, 8.28, and 7.75. Together with an analysis of the mass spectrum it also indicated that baccatin-I was a $2\alpha,5\alpha,7\beta,-9\alpha,10\beta,13\alpha$ -hexa-acetate. The u.v. absorption maximum at 217 nm (ϵ 6900) indicated^{4,5} the $\Delta^{\mathbf{u}}$ double bond but the lack of signals due to olefinic protons in the n.m.r. spectrum showed the absence of the 4(20)-methylene group. The β -proton at C-5 which carries an α -acetoxy-group appeared at an unusually high τ -value (5.77, J 3 Hz) suggesting a shielding effect by a neighbouring group such as a 4,20epoxide which would account for the additional oxygen atom.

The presence of the epoxide group and the structure of baccatin-I were proved by epoxidising with monoperphthalic acid the taxadiene hexa-acetate (V) previously isolated from *T. baccata* L.⁴ Both the 4α ,20- and 4β ,20-epoxides were obtained, together with a little diepoxide. The α -epoxide was formed in higher yield in agreement with

easier 'equatorial' attack from the less hindered side of the double bond.⁶ The β -epoxide (I) was identical with baccatin-I. The β -epoxy-group not only explains the high τ -value for the 5β -proton but also the low τ -value (8.76)

for the 8-methyl, an effect found with other taxane derivatives having a 4β -substituent.⁷ The signals of the C-20 protons of the epoxide ring are at τ 6.43 and *ca.* 7.5.

With methanolic sodium hydroxide baccatin-I afforded a methoxy-tetra-acetate, formulated as (VI) because of its n.m.r. spectrum, which *inter alia* shows signals of a new AB system at τ 5.81 and 6.18 (J 10 Hz) similar to those given by other •CH₂OAc groups in the taxane series and by the ·CH₂·OBz group of baccatin-III,⁸ and its likely mode of formation. This involves acetyl transfer from the C-2 acetate to the epoxide oxygen during opening of the epoxide to generate a C-4 carbonium ion which is then attacked by methoxide ion. Transfer from the C-5 acetate is excluded since the 5α , 13α -diol (II) reacts similarly.

Treatment of baccatin-I with boron trifluoride-ether complex in acetic anhydride gave the hexa- and heptaacetates (VII) and (VIII), probably by mechanisms involving an acetoxonium ion and an orthoacetate.

In addition to baccatin-I its 5-deacetyl derivative (III), m.p. 256—258°, and 1 β -hydroxybaccatin-I (IV), C₃₂H₄₄O₁₄,

m.p. 273° (d), $[\alpha]_{p}$ + 102° have also been isolated. In compound (IV) the C-2 proton is only coupled with that at C-3 and gives in pyridine-CDCl₃ (1:1) a doublet at τ 4.18 (J 3.5 Hz).

One of us (D.P.D.C.de M.) thanks the Consejo de Desarrollo de la Universidad Central de Venezuela for a Scholarship. We thank the S.R.C. for financial support.

(Reeeived, August 17th, 1970; Com. 1394.)

- ¹ D. A. H. Taylor, West African J. Biol. Appl. Chem., 1964, 7, 1. ² W. R. Chan, T. G. Halsall, G. M. Hornby, A. W. Oxford, W. Sabel, K. Bjåmer, G. Ferguson, and J. M. Robertson, Chem. Comm., 1966, 923.
 - ³ Fr. R. Preuss and H. Orth, Planta Med., 1965, 13, 261; Pharmazie, 1965, 20, 698.
 - ⁴ D. P. Della Casa de Marcano and T. G. Halsall, Chem. Comm., 1969, 1282.
 - ⁶ D. P. Della Casa de Marcano, T. G. Halsall, A. I. Scott, and A. D. Wrixon, *Chem. Comm.*, 1970, 582.
 ⁶ R. C. Carlson and N. S. Behn, *J. Org. Chem.*, 1967, 32, 1363.
 ⁷ D. H. Eyre, J. W. Harrison, and B. Lythgoe, *J. Chem. Soc.* (C), 1967, 452.
 ⁸ D. P. Della Casa de Marcano, T. G. Halsall, and G. M. Hornby, *Chem. Comm.*, 1970, 216.